

Journal of Organometallic Chemistry 503 (1995) C46-C47

Journal ofOrgano metallic Chemistry

Preliminary communication

The cleavage of a coordinated SCNR group in [Fe(CO) $_{2}L_{2}(\eta^{2}-SCNR)$] by [Co(η -C₅H₅)(PPh₃) $_{2}$] to give complexes containing μ_{3} -CNR ligand. The preparation and structure of [{Co(η -C₅H₅)} $_{2}$ {Fe(CO) $_{2}$ (PPh₃)}(μ_{3} -S){ μ_{3} -CNC(O)C₆H₅}]

Anthony R. Manning ^{a,*}, Liam O'Dwyer ^a, Patrick A. McArdle ^b, Desmond Cunningham ^b

^a Department of Chemistry, University College, Belfield, Dublin 4, Ireland
^b Department of Chemistry, University College, Galway, Ireland

Received 5 May 1995

Abstract

The reaction of $[Fe(CO)_2(PPh_3)_2\{\eta^2-SCNC(O)Ph\}]$ with $[Co(\eta-C_5H_5)(PPh_3)_2]$ in benzene solution at room temperature results in the facile cleavage of the C-S bond of the SCNC(O)Ph ligand to give $[\{Co(\eta-C_5H_5)\}_2(Fe(CO)_2(PPh_3)\}(\mu_3-S)\{\mu_3-CNC(O)Ph\}]$, whereas $[Fe(CO)_2(PPh_3)_2(\eta^2-SCNMe)]$ gives $[\{Co(\eta-C_5H_5)\}_2(Fe(CO)(CNMe)(PPh_3)\}(\mu_3-S)(\mu_3-CO)]$. The structure of $[\{Co(\eta-C_5H_5)\}_2(Fe(CO)_2(PPh_3)](\mu_3-S)\{\mu_3-CNC(O)Ph\}]$ has been confirmed by X-ray diffraction.

Keywords: Cobalt; Iron; μ_3 -Isocyanide; μ_3 -Carbonyl; Crystal structure

We have shown that a CS bond in the η^2 -bonded CS₂ ligand of [Fe(CO)₂(PPh₃)₂(η^2 -CS₂)] can be cleaved by [Co(η -C₅H₅)(PPh₃)₂] to give [{Co(η -C₅H₅)}₂{Fe(CO)₂(PPh₃)}(μ_3 -S)(μ_3 -CS)] [1]. The reaction has now been extended to [Fe(CO)₂(PPh₃)₂(η^2 -SCNR)] complexes.

The addition of solid $[Fe(CO)_2(PPh_3)_2(\eta^2-SCNR)]$ (R = Me [2] or C(O)Ph [3]) to a stirred solution of $[Co(\eta-C_5H_5)(PPh_3)_2]$ [4] in benzene (reactant mole ratio 1:2) resulted in a colour change from red to green over a period of 5 h. Chromatography (dichloromethane-tetrahydrofuran on alumina) gave 70% yields of green crystals of $[\{Co(\eta-C_5H_5)\}_2[Fe(CO)_2(PPh_3)\}]$ (S)(CNR)] where R = Me or C(O)Ph.

These complexes have structures similar to that of $[{Co(\eta-C_5H_5)}_2{Fe(CO)_2(PPh_3)}(\mu_3-S)(\mu_3-CS)]$ [1]. They are based on a Co₂Fe triangle bridged on one face by a μ_3 -S ligand and on the other by a triply-bridging two-electron donor coordinating through C. The infrared spectrum of that where R = C(O)Ph shows absorption bands at 1979, 1927 and 1562 cm⁻¹ (KBr disc) which are attributed respectively to the $\nu(CO_t)$, $\nu(CO)_t$ and the $\nu(CN)$ vibrations of the μ_3 -CNC(O)Ph isomer illustrated in Fig. 1(a) ($\nu(CO_{acyl})$ is found at 1642 cm⁻¹). This is the sole species found in the solid state and in solution. In contrast, when R = Me the only species observed is that illustrated in Fig. 1(b). It contains a μ_3 -CO ligand and a t-CNMe ligand and gives rise to absorption bands at 2143, 1919 and 1639 cm⁻¹ (KBr disc) due respectively to $\nu(CN)$, $\nu(CO)$ and $\nu(\mu_3$ -CO) vibrations. The ¹H NMR spectra of the two complexes also show significant differences. When R = Me the Fe(CO)(CNMe)(PPh_3) fragment is chiral and

Fig. 1. Proposed structures of (a) $[{Co(\eta-C_5H_5)}_2{Fe(CO)_2(PPh_3)}]$ (μ_3 -S){ μ_3 -CNC(O)Ph}] and (b) $[{Co(\eta-C_5H_5)}_2{Fe(CO)(CNMe)}$ (PPh₃)](μ_3 -S)(μ_3 -CO)].

^{*} Corresponding author.

Fig. 2. The molecular structure and atom labelling for [{Co(η -C₅H₅)}₂{Fe(CO)₂(PPh₃)](μ_3 -S){ μ_3 -CNC(O)Ph}]. Selected bond lengths (Å) and angles (°) are as follows: Co(1)-Co(2) 2.4266(5), Co(1)-Fe(1) 2.5224(4), Co(2)-Fe(1) 2.5483(4), Co(1)-S(1) 2.1244(6), Co(2)-S(1) 2.1333(6), Fe(1)-S(1) 2.1866(6), Co(1)-C(1) 1.917(2), Co(2)-C(1) 1.901(2), Fe(1)-C(1) 2.109(2), C(1)-N(1) 1.276(2), Co(1)-Co(2)-Fe(1) 60.87(2), Co(1)-Fe(1)-Co(2) 57.18(2), and Co(2)-Co(1)-Fe(1) 61.948(11).

the two $Co(\eta-C_5H_5)$ moieties differ and give rise to two cyclopentadienyl resonances at δ 4.51 and 4.61 downfield from Me₄Si (CD₃CD₅ solution) with a single Me resonance at δ 2.21 which is a doublet ($J_{PH} = 1.8$ Hz). When R = C(O)Ph the Fe(CO)₂(PPh₃) fragment is not chiral, and there is a single C₅H₅ resonance at δ 4.69 with the PhC(O) resonances at δ 7.32, 7.43, and 9.13 (C₆D₆ solution). The spectra of both compounds also show the resonances due to the PPh₃ ligand at ca. δ 7–8. Although crystals of $[{Co(\eta-C_5H_5)}_2{Fe(CO)(CNMe)(PPh_3)}(\mu_3-S)(\mu_3-CO] \text{ could not be obtained, one of } [{Co(\eta-C_5H_5)}_2{Fe(CO)_2(PPh_3)}(\mu_3-S)(\mu_3-CNC(O)Ph] \text{ was subjected to an X-ray diffraction study} [5], and the structure proposed on the basis of spectroscopic data confirmed (Fig. 2). It is very similar to that of <math>[{Co(\eta-C_5H_5)}_2{Fe(CO)_2(PPh_3)}(\mu_3-S)(\mu_3-CS)]$, but with the μ_3 -CS ligand replaced by μ_3 -CNC(O)Ph which bonds through carbon more or less equally to the Co₂Fe triangle.

The RNCS ligand coordinates to iron through C and S rather than C and N [2]. Therefore the above results suggest strongly that it is the coordinated C=X of a η^2 -XCY ligand which is cleaved by [Co(η -C₅H₅)(PPh₃)₂], and not the uncoordinated C=Y bond.

References and notes

- A.R. Manning, L. O'Dwyer, P.A. McArdle and D. Cunningham, J. Chem. Soc. Chem. Commun., (1992) 897.
- [2] H. Ashton and A.R. Manning, Inorg. Chim. Acta, 71 (1982) 163.
- [3] A.R. Manning and L. O'Dwyer, unpublished work.
- [4] H. Yamazaki and Y. Wakatsuki, J. Organomet. Chem., 139 (1977) 157.
- [5] Crystal data: $C_{38}H_{30}Co_2FeNO_3PS$, M = 785.37, monoclinic, $P2_1/C$, a = 13.2350(10), b = 14.024(2), c = 17.928(2) Å, $\beta = 91.41(2)^\circ$, Z = 4, U = 3326.6(7) Å³, $D_c = 1.568$ Mg m⁻³, F(000) = 1600. Diffraction data were collected with a CAD4F diffractometer. The structure was solved by direct methods [6] and refined by full matrix least squares analysis [7] using 12351 reflections of which 11524 were independent. For all data $R_1 = 0.0584$ and $wR_2 = 0.1158$, whilst for data where $I > 2 \sigma I$ (4156 reflections) $R_1 = 0.0323$ and $wR_2 = 0.1030$. The drawing was obtained using the ORTEX program [8]. Tables of atom coordinates, bond lengths and angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.
- [6] G.M. Sheldrick, Acta Crystallogr., Sect. A, A46 (1990) 467.
- [7] G.M. Sheldrick, SHELXL-93, A computer program for crystal structure determination; University of Gottingen, Germany, 1993.
- [8] P.A. McArdle, J. Appl. Crystallogr., 27, (1994) 438.