The cleavage of a coordinated SCNR group in [Fe(CO$\left.)_{2} \mathrm{~L}_{2}\left(\eta^{2}-\mathrm{SCNR}\right)\right]$ by $\left[\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to give complexes containing μ_{3}-CNR ligand.
 The preparation and structure of
 $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left\{\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right\rangle\left(\mu_{3}-\mathrm{S}\right)\left\{\mu_{3}-\mathrm{CNC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{5}\right\}\right]$

Anthony R. Manning ${ }^{\text {a, * }}$, Liam O'Dwyer ${ }^{\text {a }}$, Patrick A. McArdle ${ }^{\text {b }}$, Desmond Cunningham ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University College, Belfield, Dublin 4, Ireland
${ }^{\mathrm{b}}$ Department of Chemistry, University College, Galway, Ireland

Received 5 May 1995

Abstract

The reaction of $\left[\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\eta^{2}-\mathrm{SCNC}(\mathrm{O}) \mathrm{Ph}\right\}\right]$ with $\left[\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in benzene solution at room temperature results in the facile cleavage of the $\mathrm{C}-\mathrm{S}$ bond of the $\mathrm{SCNC}(\mathrm{O}) \mathrm{Ph}$ ligand to give $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left\{\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right\}\left(\mu_{3}-\mathrm{S}\right)\left\{\mu_{3}-\mathrm{CNC}(\mathrm{O}) \mathrm{Ph}\right\}\right]$, whereas $\left[\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{2}-\mathrm{SCNMe}\right)\right]$ gives $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right)_{2}\left\{\mathrm{Fe}(\mathrm{CO})(\mathrm{CNMe})\left(\mathrm{PPh}_{3}\right)\right\}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CO}\right)\right]$. The structure of $[\{\mathrm{Co}(\eta$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left(\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right\}\left(\mu_{3}-\mathrm{S}\right)\left\{\mu_{3}-\mathrm{CNC}(\mathrm{O}) \mathrm{Ph}\right\}\right]$ has been confirmed by X -ray diffraction.

Keywords: Cobalt; Iron; μ_{3}-Isocyanide; μ_{3}-Carbonyl; Crystal structure

We have shown that a CS bond in the η^{2}-bonded CS_{2} ligand of $\left[\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{2}-\mathrm{CS}_{2}\right)\right]$ can be cleaved by $\left[\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to give $[\{\mathrm{Co}(\eta-$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left\{\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right\}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CS}\right)\right][1]$. The reaction has now been extended to $\left[\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{2}-\right.\right.$ SCNR)] complexes.

The addition of solid $\left[\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{2}-\mathrm{SCNR}\right)\right]$ ($\mathrm{R}=\mathrm{Me}$ [2] or $\mathrm{C}(\mathrm{O}) \mathrm{Ph}$ [3]) to a stirred solution of [$\left.\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ [4] in benzene (reactant mole ratio $1: 2$) resulted in a colour change from red to green over a period of 5 h . Chromatography (dichloro-methane-tetrahydrofuran on alumina) gave 70% yields of green crystals of $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left(\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right\}\right.$ $(\mathrm{S})(\mathrm{CNR})]$ where $\mathrm{R}=\mathrm{Me}$ or $\mathrm{C}(\mathrm{O}) \mathrm{Ph}$.

These complexes have structures similar to that of $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]_{2}\left(\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right\}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CS}\right)\right] \quad[1]$. They are based on a $\mathrm{Co}_{2} \mathrm{Fe}$ triangle bridged on one face by a $\mu_{3}-\mathrm{S}$ ligand and on the other by a triply-bridging two-electron donor coordinating through C . The infrared spectrum of that where $\mathrm{R}=\mathrm{C}(\mathrm{O}) \mathrm{Ph}$ shows absorption bands at 1979, 1927 and $1562 \mathrm{~cm}^{-1}$ (KBr disc)

[^0]which are attributed respectively to the $\nu\left(\mathrm{CO}_{\mathrm{t}}\right), \nu(\mathrm{CO})_{\mathrm{t}}$ and the $\nu(\mathrm{CN})$ vibrations of the $\mu_{3}-\mathrm{CNC}(\mathrm{O}) \mathrm{Ph}$ isomer illustrated in Fig. 1(a) ($\nu\left(\mathrm{CO}_{\text {acy }}\right)$ is found at 1642 cm^{-1}). This is the sole species found in the solid state and in solution. In contrast, when $\mathrm{R}=$ Me the only species observed is that illustrated in Fig. 1(b). It contains a μ_{3} - CO ligand and a t-CNMe ligand and gives rise to absorption bands at 2143, 1919 and $1639 \mathrm{~cm}^{-1}$ (KBr disc) due respectively to $\nu(\mathrm{CN}), \nu(\mathrm{CO})$ and $\nu\left(\mu_{3}\right.$ - CO) vibrations. The ${ }^{1} \mathrm{H}$ NMR spectra of the two complexes also show significant differences. When $\mathrm{R}=$ Me the $\mathrm{Fe}(\mathrm{CO})(\mathrm{CNMe})\left(\mathrm{PPh}_{3}\right)$ fragment is chiral and

(a)

(b)

Fig. 1. Proposed structures of (a) $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right)_{2}\left(\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right\}\right.$ ($\left.\left.\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CNC}(\mathrm{O}) \mathrm{Ph}\right)\right]$ and (b) $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}(\mathrm{Fe}(\mathrm{CO})(\mathrm{CNMe})\right.$ $\left.\left(\mathrm{PPh}_{3}\right) K\left(\mu_{3}-S\right)\left(\mu_{3}-\mathrm{CO}\right)\right]$.

Fig. 2. The molecular structure and atom labelling for [\{ $\mathrm{Co}(\eta-$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right)_{2}\left(\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right)\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CNC}(\mathrm{O}) \mathrm{Ph}\right)\right]$. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are as follows: $\mathrm{Co}(1)-\mathrm{Co}(2) 2.4266(5)$, $\mathrm{Co}(1)-\mathrm{Fe}(1) \quad 2.5224(4), \quad \mathrm{Co}(2)-\mathrm{Fe}(1) \quad 2.5483(4), \quad \mathrm{Co}(1)-\mathrm{S}(1)$ $2.1244(6), \mathrm{Co}(2)-\mathrm{S}(1) 2.1333(6), \mathrm{Fe}(1)-\mathrm{S}(1) 2.1866(6), \mathrm{Co}(1)-\mathrm{C}(1)$ $1.917(2), \mathrm{Co}(2)-\mathrm{C}(1) \mathrm{1.901}(2), \mathrm{Fe}(1)-\mathrm{C}(1) 2.109(2), \mathrm{C}(1)-\mathrm{N}(1)$ $1.276(2), \mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{Fe}(1) 60.87(2), \mathrm{Co}(1)-\mathrm{Fe}(1)-\mathrm{Co}(2) 57.18(2)$, and $\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{Fe}(1) 61.948(11)$.
the two $\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ moieties differ and give rise to two cyclopentadienyl resonances at $\delta 4.51$ and 4.61 downfield from $\mathrm{Me}_{4} \mathrm{Si}\left(\mathrm{CD}_{3} \mathrm{CD}_{5}\right.$ solution) with a single Me resonance at $\delta 2.21$ which is a doublet ($J_{\mathrm{PH}}=1.8$ $\mathrm{Hz})$. When $\mathrm{R}=\mathrm{C}(\mathrm{O}) \mathrm{Ph}$ the $\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)$ fragment is not chiral, and there is a single $\mathrm{C}_{5} \mathrm{H}_{5}$ resonance at δ 4.69 with the $\mathrm{PhC}(\mathrm{O})$ resonances at $\delta 7.32,7.43$, and $9.13\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$ solution). The spectra of both compounds also show the resonances due to the PPh_{3} ligand at ca. $\delta 7-8$.

Although crystals of $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\{\mathrm{Fe}(\mathrm{CO})\right.$ (CNMe) $\left(\mathrm{PPh}_{3}\right)$) $\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CO}\right.$ could not be obtained, one of $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left(\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right\}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\right.\right.$ CNC(O)Ph\}] was subjected to an X-ray diffraction study [5], and the structure proposed on the basis of spectroscopic data confirmed (Fig. 2). It is very similar to that of $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]_{2}\left(\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right\}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CS}\right)\right]$, but with the μ_{3}-CS ligand replaced by μ_{3} - $\mathrm{CNC}(\mathrm{O}) \mathrm{Ph}$ which bonds through carbon more or less equally to the $\mathrm{Co}_{2} \mathrm{Fe}$ triangle.

The RNCS ligand coordinates to iron through C and S rather than C and N [2]. Therefore the above results suggest strongly that it is the coordinated $\mathrm{C}=\mathrm{X}$ of a η^{2}-XCY ligand which is cleaved by $[\mathrm{Co}(\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}$, and not the uncoordinated $\mathrm{C}=\mathrm{Y}$ bond.

References and notes

[1] A.R. Manning, L. O'Dwyer, P.A. McArdle and D. Cunningham, J. Chem. Soc. Chem. Commun., (1992) 897.
[2] H. Ashton and A.R. Manning, lnorg. Chim. Acta, 71 (1982) 163.
[3] A.R. Manning and L. O'Dwyer, unpublished work.
[4] H. Yamazaki and Y. Wakatsuki, J. Organomet. Chem., 139 (1977) 157.
[5] Crystal data: $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{Co}_{2} \mathrm{FeNO}_{3} \mathrm{PS}, M=785.37$, monoclinic, P2 $/ / \mathrm{C}, a=13.2350(10), b=14.024(2), c=17.928(2) \AA, \beta=$ $91.41(2)^{\circ}, Z=4, \quad U=3326.6(7) \AA^{3}, \quad D_{\mathrm{c}}=1.568 \mathrm{Mg} \mathrm{m}^{-3}$, $F(000)=1600$. Diffraction data were collected with a CAD4F diffractometer. The structure was solved by direct methods [6] and refined by full matrix least squares analysis [7] using 12351 reflections of which 11524 were independent. For all data $R_{1}=$ 0.0584 and $w R_{2}=0.1158$, whilst for data where $I>2 \sigma I$ (4156 reflections) $R_{1}=0.0323$ and $w R_{2}=0.1030$. The drawing was obtained using the ortex program [8]. Tables of atom coordinates, bond lengths and angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.
[6] G.M. Sheldrick, Acta Crystallogr., Sect. A, A46 (1990) 467.
[7] G.M. Sheldrick, shelxl-93, A computer program for crystal structure determination; University of Gottingen, Germany, 1993.
[8] P.A. McArdle, J. Appl. Crystallogr., 27, (1994) 438.

[^0]: * Corresponding author.

